A theoretical framework for supervised learning from regions
نویسندگان
چکیده
منابع مشابه
A theoretical framework for supervised learning from regions
Supervised learning is investigated, when the data are represented not only by labeled points but also labeled regions of the input space. In the limit case, such regions degenerate to single points and the proposed approach changes back to the classical learning context. The adopted framework entails the minimization of a functional obtained by introducing a loss function that involves such re...
متن کاملA Theoretical Framework for Deep Transfer Learning
We generalize the notion of PAC learning to include transfer learning. In our framework, the linkage between the source and the target tasks is a result of having the sample distribution of all classes drawn from the same distribution of distributions, and by restricting all source and a target concepts to belong to the same hypothesis subclass. We have two models: an adversary model and a rand...
متن کاملA theoretical framework of divorcing couples experience
Divorce is an event affecting couples, children, families, and community. Little is known about the perception of Iranian couples who intended to get divorced with regard to the process of decision making on divorce. The purpose of this study was to build a theory about the process that leads the couples to get divorced. The grounded theory in qualitative paradigm was used. Ten couples were int...
متن کاملA unified semi-supervised dimensionality reduction framework for manifold learning
We present a general framework of semi-supervised dimensionality reduction for manifold learning which naturally generalizes existing supervised and unsupervised learning frameworks which apply the spectral decomposition. Algorithms derived under our framework are able to employ both labeled and unlabeled examples and are able to handle complex problems where data form separate clusters of mani...
متن کاملA Multi-kernel Framework for Inductive Semi-supervised Learning
We investigate the benefit of combining both cluster assumption and manifold assumption underlying most of the semi-supervised algorithms using the flexibility and the efficiency of multi-kernel learning. The multiple kernel version of Transductive SVM (a cluster assumption based approach) is proposed and it is solved based on DC (Difference of Convex functions) programming. Promising results o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2014
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2012.06.065